
Microservices and DevOps

DevOps and Container Technology
Horizontal Scaling and Session Management

Henrik Bærbak Christensen



Scalability Quality Attribute



Why?

• Scaling ~ ‘make bigger’ in some sense

• The two main Quality Attributes in Architectural sense

• Performance

– Handle more work, and/or handle it faster (latency)

• Two persons dig twice as fast as one person…

• Availability

– Ability to handle work in case of one service failing

• Two persons are less likely to be sick at the same time

– (give and take a pandemic )

CS@AU Henrik Bærbak Christensen 3



Scalability [Bass et al., 2012]

• Vertical Scalability (Scale up)

– Adding more resources to a physical unit

• More RAM, more Disk, more CPU

• Horizontal Scalability (Scale out)

– Adding more resources to logical units

• More servers

• In cloud computing Elasticity

– Add/remove VMs to resource pool

CS@AU Henrik Bærbak Christensen 4

Higher Availability ?

Higher Availability ?



According to Bass et al.

CS@AU Henrik Bærbak Christensen 5



Performance?

• Performance

– Twice the work? No, now more overhead coordinating!

• Much more on that in my ‘Software in Architecture’ fagpakke…

• Amdahl’s law

– Speedup is limited by

the portion that can be 

run in parallel

CS@AU Henrik Bærbak Christensen 6



Availability Calculations

• If a system of n replicated servers in which each server 

has a probability, p, of failing, then the system has total 

probability

• pn of failing

• Ex

– p = 5% (0.05)

• (72 minutes every 24h)

– n = 3

– Overall failure rate: 

– 0.053 = 0.000125 = 0,125 per mille

• (10 seconds every 24h)

CS@AU Henrik Bærbak Christensen 7

That is: 
1 - pn availability



SkyCave Scalability

• Ex: Some 100.000 users on SkyCave

– One user ~ one request every two seconds

– That is: 50.000 requests per second

• Issues:

– Try it with ‘socket.cpf’

• It is single-threaded server

– If ‘quote’ talks to the quote service but it is slow responding (say 10 

secs)

– Then all 100.000 users will experience a 10 second delay!

CS@AU Henrik Bærbak Christensen 8



SkyCave Scalability

• Issues:

– The ‘http.cpf’ is a thread-pooled server (Jetty)

• So less chance of all waiting for a quote, but…

• The server may hit hardware limits in

– IO transfer to/from DB

– CPU at 100%

• One solution: Horizontal Scaling:

– Make several instances of ‘daemon’ available for processing

• Two can (nearly) do twice as much as one

– Coordination effort – shared resources

CS@AU Henrik Bærbak Christensen 9



Load Balancers

One Example of Horizontal Scaling

CS@AU Henrik Bærbak Christensen 10



Load Balancer

• Load Balancer

– Makes the pool of servers under the load balancer appear as a 

single server with high computing capacity. [Bahga et al., 2014]

– Basically a reverse proxy server that distribute

requests to a pool of servers based upon some

algorithm

CS@AU Henrik Bærbak Christensen 11



Examples

• HA Proxy

– TCP/HTTP proxy

• Used by github, airbnb, instagram, stack overflow, …

• Nginx

• Round-robin DNS

– Multiple ip addresses associated with single domain

• Can also give some very weird problems

• Hardware load balancers

• Docker Swarm’s ingress network

• Messaging systems

– Can load balance… and a lot more…
CS@AU Henrik Bærbak Christensen 12



Session Management

Statefull versus Stateless



Servers and State

• The main requirement on any server that is load 

balanced is:

It must be stateless

• Stateful:
• Has cached/stored state about given session with a client in the 

server itself

• Stateless

• No stored state about given session in the server itself

CS@AU Henrik Bærbak Christensen 14



Sessions?

• Some domains do not require sessions

– Simple web browsing

– Simple data storage

• Others domains, sessions are vital

– Shopping basket while web shopping

– Game interaction

– SkyCave

• Who is exploring?

CS@AU Henrik Bærbak Christensen 15



Architectural Design

• Ok, so SkyCave has already encapsulated session 

management?

CS@AU Henrik Bærbak Christensen 16

Encapsulate what varies
Program to an interface

Favor object composition

CaveServant



Session Handling

• Bahga et al., 2014, lists the possible practices:

– Sticky sessions

• All requests from session ‘a’ are routed to the same server

– Session database

• State of session ‘a’ is stored in a database, which all servers retrieve 

session state from

– Browser cookies (client session)

• State of session ‘a’ is stored in client, and sent along to server in 

each request

– URL re-writing

CS@AU Henrik Bærbak Christensen 17



Sticky Sessions

• All requests from session ‘a’ are routed to same server

• Of course, requires the load balancer to have some logic 

to make that happen

– Example: MQ systems can route messages on ‘topics’

• A topic could be ‘skycave.server.1’

– Begin forwarded to ‘server1’ because MQ can link ‘*.*.1’ topics to that 

particular server

• Benefits/Liabilities?

CS@AU Henrik Bærbak Christensen 18



Session Database

• State of session ‘a’ is stored in a database, which all 

servers retrieve session state from

• Simple load balancing – just ‘round robin’ would do…

• Benefits/Liabilities?

CS@AU Henrik Bærbak Christensen 19



Client Session

• State of session ‘a’ is stored in client, and sent along to 

server in each request

– Browser cookies

• Again, load balance is simple

• Benefits/Liabilities?

CS@AU Henrik Bærbak Christensen 20



Discussion

• What kind of “session management” is used in SkyCave

at the moment?

– Sticky session, session database, client sessions

• Could we code a ‘client session’ approach?

– What would it require?

– And… Why can we not use the approach ☺ ?

CS@AU Henrik Bærbak Christensen 21



Discussion

• Why do we scale?

– A) to get improved availability

• Then sticky sessions are problematic

– B) to get improved performance

• Then it puts a demand on the session database – which is?

CS@AU Henrik Bærbak Christensen 22



Scaling Databases

Statefull services (databases)



Important!

• So, … we will return to that in the second course…

• Redundancy and Replication are the key techniques.

– NoSQL db’s all support it out of the box (to my knowledge)

– And the SQL ones have followed suit (to my knowledge ☺)

CS@AU Henrik Bærbak Christensen 24



Summary

• More users means more resource demand

• Answer: Add resources (or become more efficient)

– Horizontal or Vertical

• Load Balancing: 

– Make a server cluster appear like one server

• Session Management

– Handle that different servers are ‘hit’ by given client

CS@AU Henrik Bærbak Christensen 25


