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« Scaling ~ ‘make bigger’ in some sense

« The two main Quality Attributes in Architectural sense

 Performance
— Handle more work, and/or handle it faster (latency)
« Two persons dig twice as fast as one person...
« Availability
— Ability to handle work in case of one service failing

« Two persons are less likely to be sick at the same time
— (give and take a pandemic ®)
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« Vertical Scalability (Scale up)

— Adding more resources to a physical unit Higher Availability ?
« More RAM, more Disk, more CPU

« Horizontal Scalablility (Scale out)

— Adding more resources to logical units
 More servers

Higher Availability ?

 In cloud computing Elasticity
— Add/remove VMs to resource pool
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Scalability

Two kinds of scalability are horizontal scalability and vertical scalability. Horizontal
scalability (scaling out) refers to adding more resources to logical units, such as
adding another server to a cluster of servers. Vertical scalability (scaling up) refers
to adding more resources to a physical unit, such as adding more memory to a
single computer. The problem that arises with either type of scaling is how to
effectively utilize the additional resources. Being effective means that the additional
resources result in a measurable improvement of some system quality, did not
require undue effort to add, and did not disrupt operations. In cloud environments,
horizontal scalability is called elasticify. Elasticity is a property that enables a
customer to add or remove virtual machines from the resource pool (see Chapter
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* Performance

— Twice the work? No, now more overhead coordinating!
« Much more on that in my ‘Software in Architecture’ fagpakke...

« Amdahl’s law o EnnmnN

— Speedup is limited by - =
the portion that can be : o
run in parallel

Speedup
\\
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 If a system of n replicated servers in which each server
has a probability, p, of failing, then the system has total
probability

e X .
— p =5% (0.05)

* (72 minutes every 24h)
— n=3
— Overall failure rate:

— 0.05%3=0.000125 = 0,125 per mille
* (10 seconds every 24h)
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 EXx: Some 100.000 users on SkyCave

— One user ~ one request every two seconds
— That is: 50.000 requests per second

e |ssues:
— Try it with ‘socket.cpf’
* Itis single-threaded server

— If ‘quote’ talks to the quote service but it is slow responding (say 10
secs)

— Then all 100.000 users will experience a 10 second delay!
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e |ssues:

— The ‘http.cpf’ is a thread-pooled server (Jetty)
* So less chance of all waiting for a quote, but...

* The server may hit hardware limits in

— 10 transfer to/from DB
— CPU at 100%

* One solution: Horizontal Scaling:

— Make several instances of ‘daemon’ available for processing

« Two can (nearly) do twice as much as one
— Coordination effort — shared resources
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| oad Balancers

One Example of Horizontal Scaling
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— Basically a reverse proxy server that distribute
requests to a pool of servers based upon some internet
algorithm u_g

Eg Load Balancer

Reverse proxy

From Wikipedia, the free encyclopedia

In computer networks, a reverse proxy is a type of proxy server that
retrieves resources on behalf of a client from one or more servers.
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e HA Proxy H A
— TCP/HTTP Proxy PROZY
» Used by github, airbnb, instagram, stack overflow, ...
* Nginx NGINX

« Round-robin DNS

— Multiple ip addresses associated with single domain
« Can also give some very weird problems

« Hardware load balancers
* Docker Swarm’s ingress network
« Messaging systems

— Can load balance... and a lot more...
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Session Management

Statefull versus Stateless
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« The main requirement on any server that is load
balanced is:

o Stateful:

» Has cached/stored state about given session with a client in the
server itself

« Stateless
* No stored state about given session in the server itself
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« Some domains do not require sessions
— Simple web browsing
— Simple data storage

 Others domains, sessions are vital
— Shopping basket while web shopping
— Game interaction .o - - |
_ SkyCave D oprt o oy oy (STt abferti, Stritg opersciomens, String peyloas)
 Wh is exploring? | 2L T s s

String[] parts = Marsh:alling.darn;anglePIayerAndSessionIdlobjectId}l;
String playerId = parts[@];
String sessionld = parts[1];

JsonParser parser = new JsonParser();
JsonArray array = parser.parse(payload).getAsJsonArray();

try {
Player player = objecti‘lanager.getPlayerNameService[)
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* Ok, so SkyCave has already encapsulated session
management?

public interface PlayerNameService extends ExternalService {

Jr
* Get the player object corresponding to the given player id. /f Create player domain object. To ensure dependency injectien,
¥ // we have to let the factory create it
* @param playerID CaveServerFactory factory = objectManager.getFactory();

* the id of the player
* @return null if no player id is stored in the name service, ofl
* object

Player player = factory.createPlayerServant(theResult, subscription.getPlayerID(}, objectManager);
// new PlayerServant(theResult, subscription.getPlayerID(), objectManager);

¥ [/ Enter the player object reference into the name service

Flayer get(String playerID]); objectManager.getPlayerNameService() .add(player.getID(), player); e ———————
CaveServant

ok
* Add a player instance under the given player id

* @param playerID

* id to store player instance under EnCGpSU/ate WhCIt Varies
¥ @param player
* the player instance to add to service Program to an Interface
Y

void add(String playerID, Player player); Favor Object COmpOSItlon
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 Bahga et al., 2014, lists the possible practices:

— Sticky sessions
» All requests from session ‘a’ are routed to the same server

— Session database

o State of session ‘a’ is stored in a database, which all servers retrieve
session state from

— Browser cookies (client session)

« State of session ‘@’ is stored in client, and sent along to server in
each request
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« All requests from session ‘a’ are routed to same server

« Of course, requires the load balancer to have some logic
to make that happen

— Example: MQ systems can route messages on ‘topics’

» Atopic could be ‘skycave.server.1’

— Begin forwarded to ‘server1’ because MQ can link **.*.1’ topics to that
particular server

 Benefits/Liabilities?
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o State of session ‘a’is stored in a database, which all
servers retrieve session state from

« Simple load balancing — just ‘round robin’ would do...

 Benefits/Liabilities?
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« State of session ‘a’is stored in client, and sent along to
server in each request
— Browser cookies

« Again, load balance is simple

 Benefits/Liabilities?
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* What kind of “session management” is used in SkyCave
at the moment?
— Sticky session, session database, client sessions

« Could we code a ‘client session’ approach?
— What would it require?

— And... Why can we not use the approach © ?
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 Why do we scale?

— A) to get improved availability
* Then sticky sessions are problematic

— B) to get improved performance
« Then it puts a demand on the session database — which is?
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Scaling Databases

Statefull services (databases)
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« So, ... we will return to that in the second course...

 Redundancy and Replication are the key technigues.
— NoSQL db’s all support it out of the box (to my knowledge)
— And the SQL ones have followed suit (to my knowledge ©)
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« More users means more resource demand

 Answer: Add resources (or become more efficient)
— Horizontal or Vertical

« Load Balancing:
— Make a server cluster appear like one server

e Session Management
— Handle that different servers are ‘hit’ by given client



