/v

AARHUS UNIVERSITET

Microservices and DevOps

DevOps and Container Technology
Horizontal Scaling and Session Management

Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET

Scalability Quality Attribute

/v Why?

AARHUS UNIVERSITET
« Scaling ~ ‘make bigger’ in some sense

« The two main Quality Attributes in Architectural sense

 Performance
— Handle more work, and/or handle it faster (latency)
« Two persons dig twice as fast as one person...
« Availability
— Ability to handle work in case of one service failing

« Two persons are less likely to be sick at the same time
— (give and take a pandemic ®)

/v SC a.l a.b | I |ty [Bass et al., 2012]

AARHUS UNIVERSITET

« Vertical Scalability (Scale up)

— Adding more resources to a physical unit Higher Availability ?
« More RAM, more Disk, more CPU

« Horizontal Scalablility (Scale out)

— Adding more resources to logical units
 More servers

Higher Availability ?

 In cloud computing Elasticity
— Add/remove VMs to resource pool

CS@AU Henrik Beerbak Christensen 4

/v According to Bass et al.

AARHUS UNIVERSITET

Scalability

Two kinds of scalability are horizontal scalability and vertical scalability. Horizontal
scalability (scaling out) refers to adding more resources to logical units, such as
adding another server to a cluster of servers. Vertical scalability (scaling up) refers
to adding more resources to a physical unit, such as adding more memory to a
single computer. The problem that arises with either type of scaling is how to
effectively utilize the additional resources. Being effective means that the additional
resources result in a measurable improvement of some system quality, did not
require undue effort to add, and did not disrupt operations. In cloud environments,
horizontal scalability is called elasticify. Elasticity is a property that enables a
customer to add or remove virtual machines from the resource pool (see Chapter

CS@AU Henrik Baerbak Christensen 5

eV Performance?

AARHUS UNIVERSITET

* Performance

— Twice the work? No, now more overhead coordinating!
« Much more on that in my ‘Software in Architecture’ fagpakke...

« Amdahl’s law o EnnmnN

— Speedup is limited by - =
the portion that can be : o
run in parallel

Speedup
\\

NNNNN

rrrrrrrrrrrrrrrrrr

CS@AU Henrik Baerbak Christensen 6

/v Availability Calculations

AARHUS UNIVERSITET

 If a system of n replicated servers in which each server
has a probability, p, of failing, then the system has total
probability

e X .
— p =5% (0.05)

* (72 minutes every 24h)
— n=3
— Overall failure rate:

— 0.05%3=0.000125 = 0,125 per mille
* (10 seconds every 24h)

CS@AU Henrik Beerbak Christensen 7

/v SkyCave Scalability

AARHUS UNIVERSITET
 EXx: Some 100.000 users on SkyCave

— One user ~ one request every two seconds
— That is: 50.000 requests per second

e |ssues:
— Try it with ‘socket.cpf’
* Itis single-threaded server

— If ‘quote’ talks to the quote service but it is slow responding (say 10
secs)

— Then all 100.000 users will experience a 10 second delay!

/v SkyCave Scalability

AARHUS UNIVERSITET

e |ssues:

— The ‘http.cpf’ is a thread-pooled server (Jetty)
* So less chance of all waiting for a quote, but...

* The server may hit hardware limits in

— 10 transfer to/from DB
— CPU at 100%

* One solution: Horizontal Scaling:

— Make several instances of ‘daemon’ available for processing

« Two can (nearly) do twice as much as one
— Coordination effort — shared resources

/v

AARHUS UNIVERSITET

| oad Balancers

One Example of Horizontal Scaling

CS@AU Henrik Baerbak Christensen

10

eV Load Balancer

AARHUS UNIVERSITET

— Basically a reverse proxy server that distribute
requests to a pool of servers based upon some internet
algorithm u_g

Eg Load Balancer

Reverse proxy

From Wikipedia, the free encyclopedia

In computer networks, a reverse proxy is a type of proxy server that
retrieves resources on behalf of a client from one or more servers.

CS@AU Henrik Beerbak Christensen 11

Y Examples

AARHUS UNIVERSITET
e HA Proxy H A
— TCP/HTTP Proxy PROZY
» Used by github, airbnb, instagram, stack overflow, ...
* Nginx NGINX

« Round-robin DNS

— Multiple ip addresses associated with single domain
« Can also give some very weird problems

« Hardware load balancers
* Docker Swarm’s ingress network
« Messaging systems

— Can load balance... and a lot more...
CS@AU Henrik Beerbak Christensen 12

/v

AARHUS UNIVERSITET

Session Management

Statefull versus Stateless

/v Servers and State

AARHUS UNIVERSITET

« The main requirement on any server that is load
balanced is:

o Stateful:

» Has cached/stored state about given session with a client in the
server itself

« Stateless
* No stored state about given session in the server itself

CS@AU Henrik Beerbak Christensen 14

eV Sessions?

AARHUS UNIVERSITET

« Some domains do not require sessions
— Simple web browsing
— Simple data storage

 Others domains, sessions are vital
— Shopping basket while web shopping
— Game interaction .o - - |
_ SkyCave D oprt o oy oy (STt abferti, Stritg opersciomens, String peyloas)
 Wh is exploring? | 2L T s s

String[] parts = Marsh:alling.darn;anglePIayerAndSessionIdlobjectId}l;
String playerId = parts[@];
String sessionld = parts[1];

JsonParser parser = new JsonParser();
JsonArray array = parser.parse(payload).getAsJsonArray();

try {
Player player = objecti‘lanager.getPlayerNameService[)

CS@AU .get(playerId); 15

- Architectural Design

AARHUS UNIVERSITET

* Ok, so SkyCave has already encapsulated session
management?

public interface PlayerNameService extends ExternalService {

Jr
* Get the player object corresponding to the given player id. /f Create player domain object. To ensure dependency injectien,
¥ // we have to let the factory create it
* @param playerID CaveServerFactory factory = objectManager.getFactory();

* the id of the player
* @return null if no player id is stored in the name service, ofl
* object

Player player = factory.createPlayerServant(theResult, subscription.getPlayerID(}, objectManager);
// new PlayerServant(theResult, subscription.getPlayerID(), objectManager);

¥ [/ Enter the player object reference into the name service

Flayer get(String playerID]); objectManager.getPlayerNameService() .add(player.getID(), player); e ———————
CaveServant

ok
* Add a player instance under the given player id

* @param playerID

* id to store player instance under EnCGpSU/ate WhCIt Varies
¥ @param player
* the player instance to add to service Program to an Interface
Y

void add(String playerID, Player player); Favor Object COmpOSItlon

CS@AU Henrik Beerbak Christensen 16

/v Session Handling

AARHUS UNIVERSITET

 Bahga et al., 2014, lists the possible practices:

— Sticky sessions
» All requests from session ‘a’ are routed to the same server

— Session database

o State of session ‘a’ is stored in a database, which all servers retrieve
session state from

— Browser cookies (client session)

« State of session ‘@’ is stored in client, and sent along to server in
each request

/v Sticky Sessions

AARHUS UNIVERSITET
« All requests from session ‘a’ are routed to same server

« Of course, requires the load balancer to have some logic
to make that happen

— Example: MQ systems can route messages on ‘topics’

» Atopic could be ‘skycave.server.1’

— Begin forwarded to ‘server1’ because MQ can link **.*.1’ topics to that
particular server

 Benefits/Liabilities?

V4V Session Database

AARHUS UNIVERSITET

o State of session ‘a’is stored in a database, which all
servers retrieve session state from

« Simple load balancing — just ‘round robin’ would do...

 Benefits/Liabilities?

VeV Client Session

AARHUS UNIVERSITET

« State of session ‘a’is stored in client, and sent along to
server in each request
— Browser cookies

« Again, load balance is simple

 Benefits/Liabilities?

eV Discussion

AARHUS UNIVERSITET

* What kind of “session management” is used in SkyCave
at the moment?
— Sticky session, session database, client sessions

« Could we code a ‘client session’ approach?
— What would it require?

— And... Why can we not use the approach © ?

eV Discussion

AARHUS UNIVERSITET
 Why do we scale?

— A) to get improved availability
* Then sticky sessions are problematic

— B) to get improved performance
« Then it puts a demand on the session database — which is?

CS@AU Henrik Baerbak Christensen 22

/v

AARHUS UNIVERSITET

Scaling Databases

Statefull services (databases)

/v Important!

AARHUS UNIVERSITET
« So, ... we will return to that in the second course...

 Redundancy and Replication are the key technigues.
— NoSQL db’s all support it out of the box (to my knowledge)
— And the SQL ones have followed suit (to my knowledge ©)

/v Summary

AARHUS UNIVERSITET
« More users means more resource demand

 Answer: Add resources (or become more efficient)
— Horizontal or Vertical

« Load Balancing:
— Make a server cluster appear like one server

e Session Management
— Handle that different servers are ‘hit’ by given client

